sinx的无穷乘积式

观察以下两个式子:

sin3x=3sinx4sin3xsin5x=5sinx20sin3x+16sin5x

可以发现

sin(2n+1)x=sinxP(sin2x)

其中P(x)是关于xn次多项式.

因为limx0sin(2n+1)xsinx=2n+1,所以P(x)的常数项为2n+1.

同时,sin(2n+1)x的根为kπ2n+1,kZ,所以sin2kπ2n+1,k=1,2,,n恰为P(x)n个根.

P(x)=(2n+1)(1xsin2π2n+1)(1xsin22π2n+1)(1xsin2nπ2n+1)P(x)=(2n+1)k=1n(1xsin2kπ2n+1)sin(2n+1)xsinx=(2n+1)k=1n(1sin2xsin2kπ2n+1)sinx(2n+1)sin12n+1x=k=1n(1sin212n+1xsin2kπ2n+1)sinx(2n+1)sin12n+1xk=1m(1sin212n+1xsin2kπ2n+1)=k=m+1n(1sin212n+1xsin2kπ2n+1)

左边对n取极限,使n.

sinxxk=1m(1x2k2π2)

对于右边,有这一不等式

2πx<sinx<x,x(0,π2)sin212n+1x<x2(2n+1)2sin2kπ2n+1>4k2(2n+1)2sin212n+1xsin2kπ2n+1<x24k2

于是就有

1>k=m+1n(1sin212n+1xsin2kπ2n+1)>k=m+1n(1x24k2)>k=m+1(1x24k2)1>k=m+1n(1sin212n+1xsin2kπ2n+1)>k=m+1(1x24k2)

这个式子是否成立与n的取值无关,所以代入n的极限可得

1>sinxxk=1m(1x2k2π2)>k=m+1(1x24k2)

再在两边对m取极限,使m.两边极限都是1,所以根据极限夹逼准则,可得

sinxx=k=1(1x2k2π2)
sinx=xk=1(1x2k2π2)

sinxx也被称为sincx.